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ENERGY ADDITION TO AN ATOMIC HYDROGEN PLASMA 


AT OFF-RESONANT CONDITIONS 


by Richard R. Woollett 


Lewis Research Center 


SUMMARY 


The efficiency of energy addition to a plasma by means of a Stix coil was determined 
for off-resonant conditions. The results included effects of cyclotron damping and axial 
temperature. The coupling resonance was found to be much sharper than had been pre­
dicted previously. Additional maxima in power absorption were found at slightly higher 
magnetic fields. These off-resonant maxima exhibited magnitudes and breadths that 
made them appear well suited to plasma heating. These new maxima appeared because 
of a beat phenomenon between the forced and natural plasma waves. 

INTRODUCTION 

At present, there is considerable interest (ref. 1) in heating a magnetoplasma by the 
addition of electromagnetic wave energy in the neighborhood of the ion cyclotron fre­
quency. The calculated magnitude and half breadth of the resonant absorption presented 
by Stix in reference 2 indicate that this technique is an efficient way to heat a plasma. 
However, several problems plaguing the experimentalist make it difficult to verify the 
theory. First, diagnostic techniques for plasmas are often of questionable value. 

. Second, in the region of the ion cyclotron frequency, there are theoretically possible 
competing phenomena that could absorb the excited wave energy. An example of such a 
process is the particle resonance associated with atomic ions or with molecular ion-atom 
combinations (ref. 3). Further complications result from the shift in the resonance re­
sulting from collisions (ref. 4). It would be helpful if theory predicted more than just 
the location of a resonant point. In fact, if the calculated energy addition had distinguish­
ing features other than a simple resonant maximum, there would be strong evidence of 
verification from just the experimental duplication of the shape of the power curve. The 
present calculation of energy addition by the excitation of the natural plasma waves 



(using a Stix coil, ref. 2) exhibits such distinguishing features. 
The previous analysis (ref. 2) assumed a uniform, fully ionized plasma immersed in 

a large steady-state magnetic field. In addition, it was assumed that there were at most 
only a few electron-ion collisions as the ions traversed under the Stix coil. In the deri­
vation, however, certain approximations were made in order to present the solutions in 
a compact form. This resulted in expressions only good for a coupling resonant condi­
tion, that is, where the wave number associated with the radiating coil system was 
identical to the wave number of the natural modes of the plasma. In addition, these 
resonant results were good over limited regions of plasma conditions. Because of these 
restrictions, effects associated with axial temperature and cyclotron damping were lost. 
The theory presented was mainly applicable to a situation where the current boundary at 
the coil had a pure sinusoidal wave form. In this derivation, certain questionable ap­
proximations were incorporated. This difficulty was later circumvented (ref. 5) by ap­
proaching the problem in a somewhat different manner. However, axial temperature ef­
fects, cyclotron damping, and particle energy, which a re  of interest in the present study, 
a re  still not covered in reference 5 for a Stix coil. In the present analysis, only a single 
impressed current wave shall be considered. The model used will be the same as the 
one used in reference 2 except that in the present case certain of the previous approxi­
mations will not be made. The equations will then be applicable at off resonance. This 
procedure will also extend the use of the equations to cover a continuous range of plasma 
conditions that include cyclotron damping and axial temperature effects when significant. 

The results of the analysis are presented in the form of so-called U-factors, which 
represent (as in ref. 2) a nondimensional power expression. The nondimensionalizing 
factor is the magnetic field energy associated with a Stix coil for a no-plasma condition. 
The U-factors for both wave energy and the transverse kinetic energy of the particles 
a re  presented as functions of the steady-state magnetic field for the range from 4000 to c 
6000 gauss (the range of interest in current Lewis Research Center experiments).

11 
Cal- ii culations a re  presented for an atomic hydrogen plasma having the densities of 10 , 

10l2, and 1014 ions per cubic centimeter and having various axial temperatures between 1 
the limits of 103 to lo5 OK. Data for coil current wave lengths of 20, 30, 40, and 50 11

Bcentimeters are also presented. A numerical comparison is also made between the 
various dispersion relations involved in the analysis. 

1 
SYMBOLS 

A atomic number of ion 

A* defined by eq. (4) 
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I 
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m 

N 

n 

P 

pD 

p* 
Q 
R 

coefficients of Fourier-Bessel expansion for electric field 

nondim nsional amplitude of perturbation magnetic field (perturbation field in 
G divided by Bo) 

zero-order axial magnetic field strength, G 

value of magnetic field for which coupling resonance of ref. 2 occurs for a 
given frequency, G 

speed of light, cm/sec 

amplitude of electric field, esu/Bo 

kinetic energy of ions, eq. (loa) 

defined by eq. (32) 

modified Bessel function of first kind and order n (ref. 6) 

defined by eqs. (5a) and (5b) 

Bessel functions of order n (ref. 6) 

amplitude of sheet current, (abs amp/cm)(4m/Bo) 

modified Bessel function of second kind and order n (ref. 6) 

wave number, rad/cm 

Boltzmann's constant 

nondimensional coil length, lwci/c 

coil length, cm 

defined by eq. (25) 

mass of ions, g 

number of wavelengths per coil length (N = 2 for all calculations) 
particle density, ions/cm 3 

average power transferred from coil to plasma for given sinusoidal coil cur­
rent, ergs/sec 

peak radio-frequency mgnet ic  field energy in a vacuum (times w), defined 
by eq. (18) 

(1* S2)(KSO) -1 

storage factor of coil 

nondimensional radius, rwci/c 
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defined by eqs. (19b) and (19d) 


radius, cm 


plasma radius, c m  


defined by eq. (35a) 


defined by eq. (35a) 

nondimensional axial velocity, (2bTi/mc 2)1/2 


nondimensional time, tuci 


axial temperature of plasma 


time ion starts path under coil 


time, sec 


power absorption factor (U-factor), P/PD 


real part of Bessel function of orders 0 and 1, respectively 


imaginary part of Bessel function of orders 0 and 1, respectively 


defined by eq. (12) 


nondimensional axial distance, z wci 


charge number of ion 


location at  end of coil 


axial coordinate, cm 


axial unit vector 
2 24mmc /Bo 

defined by eq. (8b) 

defined by eq. (31) 

defined by eq. (33) 

defined by eq. (35b) 

defined by eq. (26a) 

defined by eq. (26b) 

defined by eqs. (22), (23), and (24) 
Cnondimensional axial wave number, k ­

wci 
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x axial wavelength, cm 

I-L defined by eq. (8b) 

V nondimensional radial wave number 

"0 real part  of v 

v1 imaginary part  of v 

5 defined by eq. (26b) 

P defined by eq. (8b) 

=1 

=2 
defined by eq. (8b) 

T,6,* defined on pp. 19 and 20 

axial conductivity, eq. (2) 

transverse 'conductivity, eq. (3) 

SQ defined by eq. (16b) 


Q nondimensional frequency, w/wci 


Q(res) frequency for Bo(res) 


nondimensional frequency w/wci, which originates f rom the vacuum dis-QD 
placement current te rm in Maxwell's equation 

w 

wci 

frequency, radians /s ec 

ion cyclotron frequency, B
0
e/mc 

Subscripts: 


C cold plasma 


m various natural modes 

P particle 

r, 0 ,z  cylindrical coordinates 

W wave 

x,Y, z rectangular coordinates 


1 component of vector perpendicular to the z-axis 


Superscript: 


.-, amplitude factor of the perturbation ei(kzwt)  


? designates derivative of Bessel function with respect to i ts  argument 
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THEORY 

Dispersion Relat ion 

The mathematical model used to develop the equations to determine the power 
transfer is essentially the same as the model used by Stix. Both models used the fol­
lowing set of assumptions: 

(1)The plasma is fully ionized. 

(2) The I2R losses, gravity, viscosity, and electron inertia are neglected. 

(3) The ion temperature is nonisotropic, that is, zero in the transverse direction. 

(4) The distribution of the axial velocity of the ions is Maxwellian. 

(5) All oscillations a r e  periodic in axial distance and in time (i.e. , contain the 


factor ei(kz+ot)) 

(6) The perturbation velocities a re  small amplitude oscillations perpendicular to a 
steady-state magnetic field. 

(7) Perturbations of the electron and ion axial velocities are ignored. Consequently, 
the derivations will follow very closely those presented in reference 2. 

The essential character of electromagnetic wave propagation through a plasma is 
represented in the dispersion relation. This expression is entirely independent of 
plasma size and depends only on the various transport properties of the gas. Since the 
dispersion relation is completely dependent on plasma currents, which in turn depend on 
particle (ion and electron) velocity, the initial step in the derivation of the equations is to 
obtain relations for the various particle velocities. This is done by first dividing the 
plasma into a massless electron fluid and into constituent streams of ions. Each con- 1 

stituent stream consists of those ions of the Maxwellian distribution that have the same I 

axial velocity. The expression for the average transverse ion velocity is now obtained 
by solving the equation of motion of each constituent stream and adding the various I 

streams together. By a similar technique it can be shown that the electron velocity is 
comprised of two parts - one originating from the free motion along the steady-state 
magnetic field and the other from an E X B drift motion. With these expressions for i

I 

the average velocity of the particles under the coil, a plasma current may be derived, 4 

i
1 

which when used with Maxwell's equation results in the following wave equation: ff
i 

o1 a(I++ I- - 1) + ia(A+ - A-) 

o2= a(S2 + I+ - I-) + ia(A+ + A ) 
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Equation (1)is the same as equation (7)of reference 2 except for the retention of the dis­
placement current te rm Q i Z .  Including the displacement currents extends the range of 
validity of the solutions to very high frequencies, such as those corresponding to ion 
cyclotron resonance at high magnetic fields. The quantity QD that appears throughout 
the report is identical to Q but is given the subscript D when it appears in terms that 
originate from the displacement currents. The expressions used for A+ and A are 
the long-time asymptotic forms presented in reference 2, which are equal to 

The quantities I-+ can be expressed in the form 

For p
f 
I12, equation (5a) is represented to good accuracy by 

Equation (5b) is an asymptotic form of equation (5a) and is obtained by evaluating 

e - y 2 1 y  eX2dx for large arguments by LfHospital rule. For p, = 12, the difference 

in the two expressions is less  than one in the seventh place. This accuracy is the same 
order as that involved in the evaluation of equation (sa) itself. To evaluate equation (5a), 
a table obtained from reference 7 was used. 

The solution of equation (1) shows that, for a uniform axially symmetric plasma 
where u1 and u2 are independent of position, kr and ko  vary as the unmodified 
Bessel function of the first kind and of the first order. The radial wave number v that 
appears in the Bessel function J1(vR)can be written as 



I 

where 

This is the dispersion relation for the propagation of an electromagnetic wave through the 
plasma model described previously. It includes effects of cyclotron damping and vacuum 
displacement currents. 

To determine the real and imaginary parts of v from equation (6) ,  let 

v = vo + i v l  

Then 

2v2 = (vo + ivl) 2 = (vo2 - vl) + 2vovli 

Consequently, 

R e v2 = vo2 - v12 

Im v2 = 2v0v1 

Expressions for vo and v1 can readily be obtained from these equations as functions 

of Re v2 and Im v2 , which in turn can be obtained by substituting equations (2) and (3) 
into equation (6) and by collecting the real and imaginary parts of the resulting expres­
sion. This results in 

where 
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I
2p = Re al - KD 

P = Re a2 

p = Im o2 

With the previous expressions for vo and v1 it is possible to obtain the radial distribu­
tion of Eo and E, for a forced axial variation of the electric fields. From these dis­
tributions it is possible to calculate the power absorbed by the plasma. 

Power Absorption U-Factor 

There a re  several ways in which the plasma can absorb energy. One of these is by 
means of the kinetic energy of the particles involved, and the other is by a cooperative 
effect of the ions and electrons such that the electric and' magnetic field intensities 
within the plasma increase above the vacuum values. The two sets of calculations to 
determine the absorbed energy s tar t  from two different and not necessarily self-
consistent models. 

energy calculations a re  made, however, boundary conditions have to be considered. 
the present calculations, energy is radiated from a Stix coil and is absorbed by the 
plasma. It is then propagated out from under the coil either by a plasma wave or 
through the kinetic energy tied up with the ion motion. The results are presented in 
terms of a relative power efficiency, called the U-factor, and defined by 

So far the relations developed do not involve any plasma boundary conditions. When 
For 

U=-P 

pD 
(9) 


where P is the average power transferred from the coil to the plasma for a given 
sinusoidal coil current, and PD is the product of w and the peak radio-frequency 
magnetic energy stored in the field of the coil in the absence of a plasma. Actually there 
are other factors (see ref. 2) involved in determining an overall efficiency, but they all 
represent power losses originating from the geometry of the coil system. These addi­
tional factors a r e  neglected, since the primary concern herein is the ability of a plasma 

9 



to absorb power, which is solely dependent on the U-factor. If the plasma fills the 
volume under the coil, the overall efficiency (ratio of power input to the plasma to the 
total power used) is QU/(l + QU) where Q is the vacuum Q of the coil. 

Power absorption by particle resonance (U
P
). - Considered first is the energy ab­

sorbed by the particles themselves. It has been shown (ref. 2) that if the transverse 
energy of an ion averaged over an oscillatory cycle is further averaged over a 
Maxwellian distribution of axial velocities, the resulting average energy as a function of 
time (ref. 2) is 

&i= mc2{[F0 + (T - T0 2) -A+] lEx + 6Y l 2  

where Fo is a term independent of time. The power associated with such a phenomenon 
can be obtained by taking the time derivative of this energy: 

where the integration extends over the volume under the S t i x  coil. When equation (loa) 
is substituted into equation (lob) 

But 

so that 
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nlocinmc 
Pp = 

where 

2 - 2 r 

1 = NX 

The solution of equation (1)with the boundary conditions for an infinitely long cylin­
drical plasma bounded by an azimuthal sheet current having a sinusoidal axial variation, 
that is, r*ei(KZfWt), 

where 

This expression can be used with real, imaginary, or complex v. The integral in equa­
tion (11)now becomes 

When v is real, equation (13) yields 

RJ:(vR)dR = $[i2(vRo) + - & - ) J ; ( v R 0 ]  

Ro 

When v is imaginary, the integral in equation (13) may be evaluated by setting 
Jl(ivlRo) = iI1(vlRo). The result is 

11 




The remaining case for v complex is somewhat more involved since J1(vR) itself is a 
complex number. The integral can be expressed as 

where 

”1 cp=  arc  tan ­
”0 


JO(vRO)= UO(vRO)+ iVo(vRo) 

J1(vRo) = U1(vRo) + iVl(vRo) 

The term in equation (11) involving the ratio of electric fields may be evaluated from 
I

the component of the wave equation (eq. (1)). Thus, B 

Consequently, 
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where p, P ,  T, and p are dc Fined by equations (8b). 
Before the U-factor can be obtained, an expression must be derived for the 

quantity P,, (eq. (9)). This expression can be given as 

where the integration is from zero to infinity radially and is bounded by the ends of the 
coil axially. The magnetic field components under an ideal coil a re  given by 

-
Bo = O  1

KDEZ = i & - - ~( K  
a O DR) J 

where 

(R = ir*QRoK1(~DRo) 

Outside of the ideal coil they are given by 

gr = s -K K1(~DR)
a 

Go = 0 

-BZ = - is-KD Ko(~DR)a 

where 
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Adding all the field energies present results in 

When equations (11) to (14) and (20) are substituted into U
P = PP/P D’ 

where 

17’ for v1 = 0 

2 

1 7 =  for vo = 0 

for v complex (24) 
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With equations (21) to (26a) it is possible to calculate the U-factor due to adding power to 
a plasma by means of the kinetic energy of the ions present. 

Power absorption by means of waves (U,). - Power absorption by means of waves 

is by far the more important of the two phenomena being considered herein, because the 
magnitude of the U-factor for wave absorption is generally considerably larger except 
perhaps at the coupling resonant condition. This wave energy absorption is accomplished 
by increasing the wave amplitude and changing the phase angle. Before proceeding with 
the analytical formulation of the problem, the boundary conditions must be explicitly 
stated since they play a more integral part in the derivation of wave energy than in parti­
cle energy. It is considered that the region of the plasma which responds to the forced 
radio frequency wave l ies inside a n l b o ~ i lbeneath the Stix coil. This plasma box is 
bounded on the left and right, outside of the Stix coil, by a cylindrical plasma that ex­
tends to infinity and has a radius ro equal to that of the coil. The plasma box is also 
bounded by the coil itself. The solutions for the plasma box and the infinite plasma out­
side the coil a r e  joined by making the wave amplitudes continuous at the boundary. Out-

, 	 side of the coil, the wave motion is assumed to be a natural mode of oscillation of a 
cylindrically bounded plasma in which the wave amplitude is constant. In the left hand 
region, the amplitude of a right running wave is zero. The right running wave squirts 
out the right end of the coil and propagates axially to infinity (ref. 2). An analogous 
phenomenon occurs with the left running wave. Underneath the exciting coil, it has been 
assumed that the forced plasma wave is equal to that generated by a Stix coil of infinite 
length. The forced wave, that is, J1(vR), in the plasma box under the Stix coil can be 
Fourier decomposed into an infinite ser ies  of Jl(vmR); that is, 

15 




where vm is the radial wave number for the mth radial mode of oscillation of the free 
cylindrical plasma. The forced electric field is given by 

Egei(KZ'aT) = WJ1( vR)ei(KZ+aT) 

Consequently, 

Eo = WamJ1(vmR) 

m=1 

The natural mode relation used was obtained from expressions previously developed 
(ref. 8) for cold collisionless plasmas (for which no cyclotron damping occurs). For a 
given a,Bo, and n these natural modes can be obtained from the simultaneous solution 
of the following two equations (ref. 8): 

and 

1Equation (27) is the dispersion relation for a cylindrically symmetric plasma where the t 

i(KC Z +aT) i 

perturbations have the form Jl(vcR)e . Equation (28) is obtained from the wave 
equation and the **boundarycondition'? for a vacuum boundary of a plasma located at T,a 

I 

R = Ro. The azimuthal electric field, along with its associated magnetic field, were 
both assumed continuous across the boundary. In the derivation of equations (27) and 
(28), the axial electric field was set equal to zero (negligible electron mass). It is not a 
particularly straightforward calculation to find a solution which is designated vm and 

Km f rom these expressions. The technique used herein is outlined in appendix A. 
Once the values of the wave numbers associated with the natural modes of plasma 
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oscillation have been determined, an expression for 
the electric fields under the coil can be derived. In 

\ -z order to satisfy the boundary conditions existing on 
each end of the coil, a natural mode wave must be 
added to the forced disturbance. This is analogous 
to adding a complementary solution of a differential 
equation to its particular solution. The electric field 
under the coil can be represented by 

- Z  
ZO E6ei(KZ4T) = WamJ1( vmR)ei(KZM T )  

Figure 1. - Schematic of spatial variation of wave 
amplitude and coil c u r r e n t  

where the bmvs a r e  coefficients to be determined by the boundary conditions. (Only a 
term equivalent to the first series on the right hand side of eq. (29) was required for  the 
fields in the particle model.) The boundary condition requires that the electric field for 
each left running radial mode vanishes at the right end of the coil, that is, at Z = Zo 
(see fig. 1). This results in 

iKZO i K  z 
Wame + b,e o = o  

and 

i(K- K ~Zo)
bm = -Wame 

Consequently, equation (29) becom s 

If it is assumed that the terms of the Fourier Bessel expansion of Jl(vR) are all ortho­
gonal, then the following expression for Pm can be developed by normal techniques: 

17 




where 

and 

? / =  - \  (33)I 

This expression for Pm varies somewhat from that of reference 2 because of the in­
clusion of several terms that were dropped in that reference. The assumption that all 
the Jl(vmR)% are orthogonal, of course, is incorrect. However, calculations have 
been made of the greatest possible error  evolving from this approximation. The results 
indicate that the e r ror  in the various coefficients of the expansion is less  than 1percent. 
The expression for y given by equation (33) can still be used when v is complex. It 
can be noticed that when v is either real or imaginary, y is real; when v is complex, 
y is complex. Equations (30) to (33) represent the electric field of a particular plasma 
mode set  up by distributed currents within the plasma. If this field is evaluated at the 
coil radius, total power input into the plasma may be obtained by integrating over the 
surface of the plasma boundary the product of the electric field and the current required r 

to create it. When this operation is performed, there is an expression for the average 
power going into the mth radial mode (P,),: ? I 
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where 

S(6) = 1 - cos 26 + i(26 - sin 26) = so + isl 
(354 

26 

and 

6 3 ( K  - Km)L/2 (35b) 

It may be noticed that equations (34) and (35a) are identical to equations (22) and (23) 
of reference 2. The region of 52 in which damping is important will be shown to be ex­
tremely small and centered about the point 52 = 1. If there is no damping present, only 
the real part of S(6) enters in the expression for real power; the imaginary term con­
sequently represents the reactive power. The previous expression for power has the 
units of ergs per second. If the resistive power (eq. (34)) is nondimensionalized with 
respect to the same expression (eq. (20)) used with the particle power, then the U-factor 
for  the resistive wave, mth mode, is 

For vo or v 1  = 0, 

2T = [so(v; - v; - vm) + 2v0v s y 

1 3  

. For v complex, 

2 2T = (Re @) So(vo - u1 - vm) + 2(v0v1Sl)] - (Im %)[s1(v0- vl2 - vm) - 2vou1S0]1 1 " 2 2  
where 
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I m +  = 
Im @ [f(K) - f(Km)] 

b e  CP + f ( K j 1 2  + (Im Q ) ~  

u; + v; 

and where the U's and V's a r e  defined by equation (16b). 
All the relations required to determine the efficiency of adding energy to a plasma 

by means of the wave energy and the particle energy have now been presented. The ex­
pressions do not require that calculations be made at  a natural wave resonance condition. 
Calculations were performed at  various ion densities, frequencies, axial ion tempera­
tures, and plasma radii. They were performed for a fully ionized atomic hydrogen gas. 

RESULTS 

The results will be discussed in four sections, each of which is fairly independent of P 

the other. The first section, Wave Number, examines the natural modes of a cylindrical 
plasma for a range of plasma radii, wave frequencies, and particle densities. The I 

*! 

second section, Absorption Characteristics, discusses, without reference to the actual I 

magnitudes of the parameters involved, the trends of energy addition to the plasma. The 
third and fourth sections, "Wave absorption (U-factor)" and "Particle absorption 
(U-factor), r f  present the numerical results of the energy addition calculations. 
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Wave Number 

Since the natural modes play an integral part in the development of the theory, it is 
of interest to examine their characteristics in detail before the results of the U-factor 
calculations a r e  presented. The natural modes used herein were obtained from the solu­
tion of the dispersion relation (eq. (27)) and the equation obtained from the boundary con­
dition (eq. (28)). The analysis technique used is presented in appendix A. A graphic 
presentation of the solution is given in figure 2. Moreover, various trends can be pre­
dicted from these figures. The dispersion relation and boundary condition solutions are 
presented as solid and dotted curves, respectively. The natural mode, obtained from 
the simultaneous solution of equations (27) and (28) are consequently represented by the co­
coordinates of the intercepts of the two curves. In figure 2(a) the boundary condition is 
shown for the first three modes of a plasma with a 5-centimeter radius. In figure 2(b) 
the boundary condition is presented for the first mode of plasmas of various radii. 
Qualitatively, a higher mode can be compared to the first mode for a plasma of smaller 
radius. It can be noticed from these figures that the axial wave number K~ is practi­
cally independent of the bour,dary condition while the radial wave number vc is practi­
cally independent of the dispersion relation. In other words, the plasma radius and mode 
determine the radial wave number while the frequency determines the axial wave number. 
The magnetic field value of 4200 gauss in these figures is typical of the values used in 
the Lewis plasma heating experiments (ref. 1). 

A summary of the fundamental mode wave numbers presented as a function of radius 
is shown in figures 3(a) and (b). The insensitivity of K~ to radius is again demon­
strated, as is the dependence of the radial wave number vm. Effects of plasma density 
can be seen by comparing the two figures (note that the scale for K~ is not the same on 
these two figures). 

An upper limit to the radial wave number vm can be found. If the boundary were an 
infinitely conducting surface rather than a vacuum, the radial modes would be deter­
mined by the zeros of J1(vR). The resulting wave numbers would be larger than the 
ones associated with the vacuum boundary. Moreover, the actual value of the first zero 
is less  than -5m - This upper limit to the first radial mode is included in figure 3 for

4 R'4f comparison. 
The dispersion relations presented in figures 2 and 3 however, do not include any 

cyclotron damping effects. A n  indication of when these effects are significant can be ob­
tained by comparing the real part of u2, that is, vo2 - v;, from equation (6) with u 2 

from equation (27). The dispersion relation of the cyclotron damped wave is plotted in 
figure 4. By comparing figure 2 with figure 4, it can be seen that although the equations 
(27) and (6) start from different physical models (the latter admits a Maxwellian distri­
bution of axial velocity and the former does not), the calculated results are very nearly 
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Figure 2. - Graphical solution for wave numbers of natural modes. Particle density, 10l1 ions per cubic centimeter; magnetic field, 4. &lo3 gauss. 
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the same. It can also be noticed that although the quantity v i  - v 2
1 

approximates the 
nondamped expression closely, there is a difference in the expressions for values of 51 
close to 1. The effect of the damping process becomes more and more dominant as the 
frequency approaches closer and closer to unity. The first major difference for 
Ti = 104 0K is noted at 51 = 0.993, and for Ti = lo5 OK at 52 = 0.985. Above these 
frequencies but for 51 still less than 1, the peak of vo2 - v12 rapidly decreases and be­
comes negative. 

Absorption Characterist ics 

Two different power absorption factors were determined: those associated with the 
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wave energy of the various plasma modes 

3 
Resonant coupling cuw)m and those associated with particle 

energy U
P' 

The total wave energy escap­

1 	 8' 

,-Ref. 2 maximum ing from the coil is the sum of the energies 
I of all the individual modes present. For 

----T;Off-resonant maxima this report, however, only wave energies 
of the first three modes were added. This 
sum is represented as Uw, so that 

Axial magnetic field, BO 
__ 

Figure 5. - Schematic of general characteristics of wave power Uw = (Uw)m=1+(Uw)m=2 + (Uw)m=3absorption factor. 

The general characteristics of Uw observed from the present calculations a re  shown as 
a function of Bo in figure 5. The first three peaks measuring from the left represent 
the coupling resonance for each of the three modes. The scale of Bo in this region is 
greatly enlarged (about 50 times). These maxima occur (see eq. (36)) when vo = 
The fourth and fifth peaks in figure 5 do not cccur near any resonant conditions and 
therefore a re  referred to as off-resonant maxima. They originate from that factor of 

the expression (34) represented by The peaking is actually a beat phenom­

enon (ref. 5, p. 98) developed between the forced and natural modes (see eq. (29)) that 
exist under the coil. 

This description differs from that presented in references 2 and 5, wherein it was 
assumed that the resistive plasma loading does not vary appreciably near the wave reso­
nant condition. When such an assumption is made the general shape of the Uw curve is 
similar to the dotted line in figure 5. Consequently, references 2 and 5 predict a wave 
resonant maximum of large breadth whereas the analysis presented herein predicts 
several extremely narrow wave resonances along with a medium-width off-resonant 
maximum. The narrow wave resonant condition is slightly shifted to the right from the 
resonant condition of reference 2 by a Doppler effect. The off-resonant peak, however, 
is considerably displaced from the reference 2 maximum. 

It is not obvious from the equation for the particle U
P 

-factor (eq. (21)) that maxima 
will occur at all Bo fields where some natural-mode axial wavelengths equal the wave­
length of the coil. However, plotting U

P 
at high Ti does show this characteristic, as 

depicted in figure 6. The three peaks are  associated with the three natural wave modes 
indicated in figure 5. The displacement of the maximum from 52 = 1 includes the 
Doppler effect associated with moving particles. Increasing the values of Ti increases 
this Doppler effect and consequently increases the displacement. When 52 = 1, however, 
cyclotron damping may become so strong that the energy associated with particle motion 
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Mode is essentially "damped" out. The term 
n cyclotron 'damping, as in reference 2, is 
c­

0 associated with the radial flow of energy. 
L 

.a The damping modifies the plasma currentsw 
2 in such a way as to reduce the magnitude 

of the transverse electric fields. Since 
U 


m particle velocity depends on the size of 
n 

the fields, kinetic energy will also de-
Axial magnetic field, BO crease along with the wave amplitude. At 

Figure 6. - Schematic Of general characteristics Of particle power these conditions, figure 6 would not be
absorption factor. 

typical of the U
P 

plots. Near the couple 
resonant condition the curves of UP a re  quite similar to the curves of Uw; each gen­
erally exhibits maxima at the couple resonant points. However at larger magnetic fields 
U

P 
is very small, whereas Uw is generally significant. This small value of U

P 
in­

dicates that very little energy is transferred to the particles a t  the off-resonant maxima. 
To investigate the U-factors in more detail, the results of the actual calculations 

must be examined. Since the steady-state magnetic field strength is the primary vari­
able in most cyclotron-resonance plasma experiments, the U-factor plots were calcu­
lated and are presented as functions of magnetic field. A general description of the flow 
diagram for the program used to calculate the U-factor is presented in appendix B. 

Because of the interest in comparing the present results with previous work, all the 
plots s tar t  at a magnetic field consistent with the cold plasma coupling resonant condi­
tion determined from the following dispersion relation (eq. (26) of ref. 2): 

!a2 =- 1 
CY 

(37) 
1 + ­ 


2
K 

where CY/K 
2 = 0. 5X10-16nA2, as given by equation (10) of reference 2, and where 

!a = w/(Boe/mc). At the coupling resonant condition A, the wavelength of the natural 
mode is equal to the wavelength of the coil. At this condition, the magnetic field will be 
referred to as Bo(res), which is generally set at 4.2x103 gauss. The frequency given 
by equation (37)for Bo(res) will be referred to as Q(res). Once the magnetic field for 
coupling resonance is selected, the dimensional frequency can be calculated from equa­
(37). Consequently, the parameters n, Bo(res), l ,  and St(res) appearing in each plot 
satisfy equation (37). 

It was noticed during the calculations that quite frequently negative Uw-factors oc­
curred at magnetic fields somewhat smaller than the fields associated with the couple 
resonant condition. This would suggest a plasma wave radiating energy to the coil and 
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therefore would require an additional mechanism to the ones being investigated just to 
sustain its existence. This added complexity was not considered herein, and regions of 
negative U-factors were not plotted. 

Wave absorption (Uw-factor). - The Uw-factor plots for a coil length of 80 centi­

meters and for particle densities of l o l l ,  10l2, and 1014 ions per cubic centimeter a r e  
presented in figure 7. Since the phenomena of coupling resonance occur in regions so 
small that meaningful data cannot be obtained from plots including both resonant and off-
resonant peaks, the data for the two effects are presented separately. Figures 7(a), 
(b-1), and (c-1) present the data for the off-resonant part of the Uw-factor for particle 
densities of l o l l ,  10l2 and respectively. Figures 7(b-2) and (c-2) present the 
data for the coupling resonance for densities of 10l2 and respectively. There is 
no resonant curve for 10l1 since the effect is damped out at these densities and fre­
quencies. By comparing the location of the maxima of the various curves presented, the 
trends of the peaks as a function of density may be obtained. However, since the S2 
corresponding to resonance changes with the density (eq. (37)) and since Bo(res) re­
mains unchanged in the various curves of figure 7, o is different for plots with different 
densities. 

The effect of density on the location and the magnitude of the various maxima is 
portrayed more directly in figure 8. Here the dimensional frequency w is kept con­
stant and Bo(res) is permitted to vary. In figure 8(a) the location of the first and 
second off-resonant peaks is shown together with the location of the resonant peak as 
given by reference 2. The resonant maximum calculated herein would fall in the narrow 
region between the curve from reference 2 and that for the first  off-resonant maximum. 
All three curves a re  of similar shape, increasing monotonically with density in the 
range considered. It would be difficult to determine which curve was being observed ex­
perimentally. The difficulty is further aggravated because the half breadth of the res ­
onant peaks is generally much smaller than that of the off-resonant peaks. Conceivably 
the former would not even be observed. Although the half breadth generally cannot be 
determined from the results, the actual width of the resonance is what is significant. In 
almost all cases investigated (which covered a range of particle densities from 10l1 to 
1014 ions/cm 3 , a range of magnetic fields from 103 to 105 G, and various coil lengths of 
40 to 100 cm), the width of the first  maximum was of the order of 5 gauss or  less. Non­
uniformities in density and the steady-state magnetic field, along with various dissipa­
tive phenomena, however, could decrease the magnitude and broaden the width of the 
resonance. With such conditions present, the couple resonance could become observ­
able. The relative magnitudes of the peaks are shown on figure 8(b). The first and 
second off-resonant peaks exceed in magnitude the resonant maximum from reference 2. 
The resonant maximum calculated herein is not shown even though its  magnitude would 
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exceed the others. I ts  previously dis­
cussed narrowness limits its signifi­
cance in a real plasma. 

The U-factors for coil lengths of 
40, 60 and 100 centimeters were also 
investigated. Since the general shape 
of the curves is similar to the data 
for a coil length of 80 centimeters, 
however, only the location and magni­
tude of the off-resonant maximum and 
the couple resonance peaks of refer­
ence 2 a re  presented in a summary 
plot (fig. 9). Here again the dimen­
sional frequency o is constant at the 
same value as in figure 8. It can be 
seen from figure 9(a) that there is a 
very small shift in the first off-
resonant maximum as the coil length 
increases. This shift is quite similar 
to that calculated from reference 2. 
A larger effect, though still rela­
tively small, is the decreasing magni­
tude of the Uw of the first off-
resonant maximum as the coil length 
increases (fig. 9(b)); the Uw-factor 
drops roughly 30 percent as in­
creases from 40 to 100 centimeters. 
Although the magnitude of U, calcu­
lated from reference 2 is considerably 
less  than that calculated for the first 
off-resonant maximum, the two 
Uw-factors plotted as a function of 
do parallel each other for the 
range investigated (fig. 9(b)). 

One of the parameters of the sys­
tem that is difficult to determine ex­
perimentally is the plasma radius. 
The radius used to calculate Uw up 
to now has been 5 centimeters. To 
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Figure 10. - Wave U-factor of couple resonance as funct ion of magnetic field and axial ion  tempera-
temperature. Particle density, 1012 ions per cubic centimeter; magnetic field for wh ich  coupling 
resonance of reference 2 occurs, 4. &lo3 gauss; frequency for value of magnetic fields for wh ich  
coupling resonance of reference 2 occurs, 0.96037; coil length, 80 centimeters; plasma radius, 
5 centimeters. 

ascertain the effect on efficiency, Uw calculations were also made for plasma radii of 
0. 5, 1.0, 2.5, and 10.0 centimeters at B = 4. 2x103 gauss and n = 10l2 ions per cubic 
centimeter. The results indicate that as the radius increases from 0. 5 to 10 centi­
meters, the Uw-factor of the first off-resonant maximum increases from 1.28 to 1.47. 
Although the effect of a reasonable change in radius is not large, the results do suggest 
that the plasma should be as big as possible for the most efficient power transfer. The 
calculations, of course, assumed that the coil radius remained equal to the plasma 
radius. If the coil radius increases for a fixed plasma radius, there is an additional loss 
in efficiency that has not been considered, that is, the volume effect of tying up field 
energy between the plasma and the coil. This does not contribute in any way to the 
energy added to a plasma but only requires more current in the coil circuit in order to 
compare cases of equal electric fields at the plasma surface. Consequently, there re­
sults an increased I2R loss. 

It can be seen by examining a large number of calculations that the Uw-factors in 
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Bo(res)-, 	 'the region of the off-resonant maxima are not 
significantly affected by varying the axial tempera­
ture; in fact, the magnitude and location of both 
off-resonant maxima remain constant. There is a 

n
B /  temperature effect, however, on the couple res­
~ 

Axial magnetic field, Bo onance. If such effects are not damped out com-
Figure 11. - Schematic demonstrating Doppler effect 

on power absorption factor near coupling resonance. 
pletely, then a variation in streaming velocity of 
the ions will modify the shape and location of the 

couple resonant maximum. This is demonstrated by comparing the first mode maximum 
in figure lO(a), which occurs at roughly 4.2X10 3 gauss, with the first mode maximum in 
figure 10(b), which occurs at 4. 22x103 gauss. This shift is similar to the Doppler shift 
depicted in figure 11. The two symmetric peaks for Ti > 0 represent the Doppler fre­
quency shift corresponding to o * kVZ (see eqs. (3)and (4) of ref. 2). Because of the 
strong cyclotron damping effects in the neighborhood of S2 = 1, however, the left mem­
ber does not always appear. At a density of 10l1 where S2 M 0.996, the damping is so 
strong at Ti = 104 0K that even the right-hand member does not appear. Figure 12 
presents the calculated shift of the natural mode resonance along with a simplified 
Doppler shift which was determined from the expression 

ksOmc2 

(AB()) = 
ea(res) 

It can be seen that the two calculations do not agree. The displacement of the first mode 
coupling resonance was much smaller than that calculated by the simplified expression. 
At lo5 OK, the displacement was less  than one-fifth of that from the simplified equation. 

In any case, an interesting observation may be made. If a cold plasma is to be 
heated to high temperatures a t  resonant coupling conditions, i t  may become necessary to 
adjust the system to stay in resonance as the plasma is heated. As pointed out pre­
viously, operation at  an off-resonant peak would be less affected by changing tempera­
tures. 

Particle absorption (U
P 

-factor). - When the particle absorption factor U
P 

and the 
.-__ 

wave absorption factor Uw are compared, i t  is recalled that the fields used for the two 
factors a re  determined from different models. 

The variation of the particle energy with respect to the magnetic field is quite simi­
lar, near the couple resonant condition, to the variation of the wave energy. Whenever a 
coupling resonant maximum appears in Uw there is a corresponding maximum in UP'
Consequently, U

P 
is generally very sensitive to variations in Bo in the vicinity of the 

couple resonant condition. Whenever the coupling resonant effects a re  negligible or non­

34 



al 

4. 27x103 I I l l  
4.26 

-Simplified 
Doppler shi f t  

I 
4. 25 

ci 
B m 

.-­.-U5I 
c 

4.241 / 
4.23 

M( 

I 

I 

4.21 t 
103 

Axial temperature of plasma, Ti, O K  

Figure 12. - Location of couple resonance as funct ion of axial temperature. Particle density, lo1' ions per cubic 
centimeter; magnetic field for wh ich  coupling resonance of reference 2 occurs, 4.2xlO3 gauss; frequency for 
value of magnetic field for which coupling resonance of reference 2 occurs, 0.96037; coil length, 80 centimeters; 
plasma radius, 5 centimeters. 

existent in one energy, there is generally a corresponding result with the other energy. 
Consequently, whenever the couple resonance wave is totally damped, the particle ab­
sorption also becomes negligible. 

The particle resonance also depends strongly on the particle axial temperature, just 
as the Uw-factor does. These latter results a re  depicted in figure 13 in a very expanded 
scale for  the conditions of Bo(res) = 4 . 2 ~ 1 03 gauss n = 10 l2  ions per cubic centimeter, 

and for Ti = 4x104, 6x104, 8x104, 105, and 1.2X10 5 OK. This figure shows that as the 
axial velocity of the ions decreases (lower streaming temperature), the magnitude of the 
maxima increases, the half breadth decreases, and their location moves to smaller 
values of Bo. The half breadths associated with these maxima, however, are generally 
so small that it would be unlikely that the resonance conditions could be experimentally 
detected. It should be reemphasized that any conclusions concerning the half breadth of 
the couple resonance are questionable. Since variations in B0 are inevitable in an ex­
perimental system (even exceeding the half breadth of the peak), the effectiveness of the 
UP-factor should perhaps be related to the area under the peaks rather than to their am­
plitude and half breadths. Consequently, such resonances could possibly be detected. 
On the other hand, it would probably be unlikely that the large peak magnitudes could 
actually be realized. 
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At magnetic fields larger than the couple resonant condition, including the fields for 
the off-resonant peaks of Uw, the particle absorption factor U

P 
is generally so small 

in comparison as to be negligible. One exception to this generalization was found in the 
calculations. This case, which is shown in figure 14, indicates the variation of the 
U-factors as a function of B~ for a 40-centimeter coil (A = 20 cm) at n = ions per 
cubic centimeter, Bo(res) = 4.2X10 3 gauss, r = 5 centimeters, and Ti = lo4 OK. Under 
these conditions, the location of the first off-resonant peaks for Uw nearly coincides 
with the location of the couple resonance. This coincidence results principally from the 
reduction in coil length. As was shown in figure 9, the off-resonant peak moves to lower 
Bo fields as the coil length decreases. On the other hand, the coupling resonance for 
waves at a given temperature shifts to higher B fields as m a y  be seen from the simpli­
fied Doppler shift equation. For the case shown in figure 14, both peaks have shifted the 
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Figure 14. - U-Factor as funct ion of 
magnetic field. Particle density, 
1012 ions per cubic centimeter; mag­
netic field for wh ich  coupling reso­
nance of reference 2 occurs, 4.2~103 
gauss; coil length, 40 centimeters; 
plasma radius, 5 centimeters; axial 
temperature of plasma, 104 OK. 

proper amount so that they will coincide. It should be noted that both absorption peaks 
are relatively narrow (compare with fig. 7(b)). However, the possibility exists that for 
some conditions a significant amount of energy could be added to the plasma directly as 
particle motion, without going through the two-step process of generating and then 
thermalizing a wave. 

CONCLUS IONS 

The model used herein to calculate the efficiency of heating a magnetoplasma by the 
use of a Stix coil is essentially the same as that used in reference 2. However, certain 
approximations of reference 2 restrict the use of the equation to the coupling resonant 
condition. In the present case, these approximations are not made. Consequently, the 
relations developed a r e  applicable off resonance. 

The actual power transfer is accomplished by two concomitant processes, the most 
important being wave generation. Here the Stix coil radiates energy to a cylindrical 
plasma core, which in turn transmits the wave energy out from under the coil in an axial 
direction. Accompanying the wave process is an energy addition to the streaming ions. 
The transverse particle energy is necessary in order to establish the traveling axial 
waves. When these powers are nondimensionalized and are plotted as functions of the 
superimposed magnetic field, the resulting curves have sufficient complexity to permit a 
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more significant comparison with experiment than just the location of a resonance. The 
following seven characteristics were common to all the response curves. 

1. When the power absorption factor (i. e., U-factor) for waves is plotted as a func­
tion of the magnetic field, there always exists an off-resonant maximum that appears 
close to the couple resonant point of the first m d e  excitation. These additional maxima 
originate from a beat phenomenon between the forced and natural plasma modes. This 
new maximum is located on the high magnetic field side of the couple resonant condition. 
Since this off-resonant peaking has a considerably larger half breadth than the couple 
resonant half breadth and since it lies so close to it, a possibility exists that it may be 
mistaken for the coupling condition. The location of the off-resonant peak behaves in a 
manner similar to the natural mode resonant condition; consequently, a mistaken identity 
can easily be made which could lead to estimates of density that a re  large. This descrip­
tion differs from that presented in references 2 and 5 since in these references it was 
assumed that the resistive plasma loading does not vary appreciably near the wave res­
onant condition. When such an assumption is made, the wave U-factor monotonically 
decreases in the region between the wave resonant and the off-resonant maximums, 
which results in a prediction of a single large breadth maximum. 

2. An additional maximum also appeared at  magnetic fields larger than the first off-
resonant maximum fields. It also originates from a beat phenomenon. The half breadth 
for this peak, however, is considerably larger than the first  off-resonant maximum. Its 
amplitude is roughly one-third that of the former. 

3. Both the first and second off-resonant peaks are insensitive to variations in the 
plasma size and axial temperature. However, the first off-resonant U-factors for 
waves did show an inverse wave length sensitivity for the shorter wavelengths. 

4. The magnitude of the f i rs t  and second off-resonant peaks was within an order of 
magnitude of the couple resonant maxima of reference 2; the first  off-resonant peak was 
always larger. 

5. The half breadth of the natural wave resonant maximum was found to be small, so  
small that i t  could be difficult to experimentally detect for coil wavelengths greater than 
30 centimeters. However, because of nonuniformities in the experimental densities and 
fields, it is possible that such peaks could be broader than indicated herein. At a small 
density, where such maxima would be very near the ion cyclotron condition, the couple 
resonance is completely damped out. As density increases and the resonance moves 
away from the ion cyclotron condition, less  cyclotron damping exists and the maximum 
is observed. 

6. The maxima of particle energy addition occur a t  the same magnetic field as those 
of wave energy addition for the natural wave resonances. Particle energy was generally 
negligible at all other values of field stre-igth even at values where the wave energy 
peaked at the off-resonant maxima. For a short coil case (coil length, 40 cm), however, 

38 




i!
i the particle energy was found to be the same order of magnitude as the wave energy at 
j the first off-resonant maximum. This comes about because the couple resonant and the 
IC 

f; first off-resonant maximum occur at the same field strength. 
i 7. As the axial temperature increases, the "coupling" maxima of the particle 

U-factor move to larger fields. The half breadth increases and the amplitude of the 
maximum decreases during this variation. 

I 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 2, 1965. 
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APPENDIX A 

SOLUTION OF EQUATIONS (27) AND (28) 

Ordinarily a Newton-Raphson technique would be used to solve equations (27) and 
(28) simultaneously. However, because the solution of the equations falls extremely 
close to the singularity of equation (27), that is, 

the correction interval for the first guess could place the second guess on another branch 
of the curve of equation (27), which would result in a hopeless condition. This difficulty, 
however, could be circumvented by using a technique that may be considered as an exten­
sion of the normal Newton-Raphson equations. 

If two new functions I) and cp are defined using equations (27) and (28) 

4 2  2-52 [. + a2 [2[. + (KC 
-a2b+ (KC2 

and if these a re  expanded in Taylor series 
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KRegions of A solution exists when// \possiblesolutions, 
/ I /I1 

/ I 
/ 

/ I 
\ q(v  + Av, K + AK) = 0 

/ I 

go(v + Av, K + AK) = 0 

s Figure 15. - Schematic of zero- and first- When this latter condition is used, equations (A2) re-

/ I  / I 

t order Bessel functions. duce to two algebraic quadratic equations with two un­
knowns A v  and A K .  Eliminating one of the unkonwns, say Av, results in a quartic 
equation in A K  which must be solved. This can be done quite readily with the use of any 
one of a number of machine programs. Of the four roots that exist, the one with the 
smallest absolute value was used in the determination of the correction interval. The 
values of vc and k

C 
for a solution are designated vm and K ~ .The only remaining 

problem is that of obtaining the first guess of the solution. Equation (28) is some help; 
since the right-hand side of equation (28) is always negative, the sign of JO(vmRO)must 
always be opposite to that of Jl(vmRO). Because of the sinusoidal nature of the Bessel 
functions, the regions of possible solution a re  values of x between the nth zero of 
Jo(x) and the (n + l)Stzero of J1(x). This is graphically demonstrated in figure 15. 
These factors can be obtained conveniently to any degree of accuracy desired from tables 
or books on Bessels function. Averaging these two limits will allow the determination of 
a value of vm to be used as a starting point. The companion coordinate K~ can then 
be obtained with the use of equation (27) and the starting value of vm just mentioned. 
The modified Newton-Raphson method just described "homes in" on the solution ex­
tremely fast, so fast that an answer can manytimes be obtained after just three or four 
tries. 
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APPENDIX B 

CALCULATION PROCEDURE 

The procedure used to calculate the U-factors was to initially select a plasma den­
sity, magnetic field, coil length, and wavelength. A magnetic field of 4 .2~103 gauss was 
selected to correspond with current Lewis Research Center experiments (ref. 1). 
Dimensional frequency was selected to be consistent with (1) the coupling resonant ex­
pression of reference 2, (2) the previously indicated magnetic field, and (3) the initial 
designated parameters. With this dimensional frequency fixed, a variation of the pair 
(a,Bo) can be determined. The natural oscillations of a plasma of a given radius R are  
then determined for each (52, Bo) combination from the simultaneous solution of equa­
tions (27) and (28). Before the U-factors can be calculated, the radial wave number of 
the forced wave must be found from equations (7) and (8). Hence, for a given coil length, 
a value of v is found for each (52, Bo) pair. Enough information has been assembled at 
t h i s  point to enable the calculation of the U-factors from equations (21) and (36). 
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